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Abstract: We carried out a systematic study on cross-polarized diffraction image (p-DI) pairs of
3098 mature red blood cells (RBCs) using optical cell models with varied morphology, refractive
index (RI), and orientation. The influence of cell rotation on texture features of p-DI pairs
characterized by the gray-level co-occurrence matrix (GLCM) algorithm was quantitatively
analyzed. Correlations between the transverse diameters of RBCs with different RI values and
scattering efficiency ratios of s- and p-polarized light were also investigated. The correlations
remain strong even for RBCs with significant orientation variations. In addition, we applied a
minimum redundancy maximum relevance (mRMR) algorithm to improve the performance of
support vector machine (SVM) classifiers. It was demonstrated that a set of selected GLCM
parameters allowed for an efficient solution of classification problems of RBCs based on
morphology. For 1598 RBCs with varied shapes corresponding to normal or pathological cases,
the accuracy of the SVM based classifications increased from 83.8% to 96.8% with the aid of
mRMR. These results indicate the strong potential of p-DI data for rapid and accurate screening
examinations of RGC shapes in routine clinical tests.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Red blood cells (RBCs) play an essential role in oxygen delivery and carbon dioxide removal in
humans. Mature RBCs contain no nuclei and exhibit biconcave shapes with different sizes and a
large degree of deformability which is a key factor enabling them to accomplish their physiological
functions [1,2]. Previous studies have shown that the alteration of human RBC morphology leads
to a number of abnormalities, such as iron deficiency, thalassemia, and sickle cell disease [3,4].
The shape flexibility of RBCs significantly increases their tendency to aggregate, which affects
microcirculation by increasing the viscosity of blood flowing in the capillaries [5]. Among the
various methods to quantify shape variations and aggregation of RBCs, the measurement of
elastically scattered light has received significant research attention [6–10]. In this method, the
angular distribution of scattered light by single cells is acquired to evaluate cell morphology and
discriminate between different cell types, including normal and abnormal RBCs. Compared with
complete blood count and manual examination of blood smears, RBCs can be characterized by
analyzing the patterns and light distributions of coherent light scattered by RBCs. Quantitative
learning of these patterns enables the extraction of the morphological features of the imaged
cells. The large signal-to-noise ratio in elastic scattering also makes it possible to rapidly image
scattered light signals by flow cytometry or microfluidic methods for the characterization and
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classification of various cancer cell lines and RBCs accurately and rapidly by their morphological
differences or changes [11–14]. To fully characterize the patterns of scattered light by RBCs of
different shapes, new modeling approaches that also promote the development of novel methods
of measurement for clinical applications have been investigated [15,16]. For example, several
studies have focused on simulating and measuring the integrated or angle-resolved distribution of
scattered light intensity along a 1D curve, yielding limited information for reliably characterizing
the morphological features of RBCs. In contrast, imaging the angular distribution of scattered
light on a 2D sensor surface can provide much enhanced information to assess the morphology
and changes of RBCs for quantitative assays [17,18].

We have developed a rapid method of polarization diffraction imaging flow cytometry (p-DIFC)
to image coherent light scattered by single cells [19]. Compared with the existing methods of
single cell assay, its benefits lie in the speed of cell processing which can detect up to about 3000
cells label-free per minute and the ability to reveal 3D shape differences among imaged RBCs
instead of cell counting and sizing only [20,21]. In this method, the scattered light is divided
into p- and s-polarized components to acquire one pair of cross-polarized diffraction images
(p-DI). The coherent nature of the scattered light makes p-DI data sensitive to the topological
changes of cells in each of the three dimensions which is very valuable for recognition of diseases
related shape changes in RBCs. So, the p-DI pair contains rich information on the intracellular
distribution of the refractive index (RI) of the imaged cell, which can be regarded as homomorphic
to the cell morphology observed through conventional microscopy methods. Using the p-DI
data, one can distinguish cells of different phenotypes by learning and extracting the embedded
features of the diffraction pattern related to cell morphology. To quantitatively correlate the
3D intracellular RI distribution to the measured p-DI data, we further developed a set of tools
to simulate light scattering by a cell with a realistic optical cell model (OCM) and calculate
p-DI pairs by tracking scattered light through the imaging unit of a p-DIFC system [22]. The
results of our previous investigations, ranging from single spheres to human cancer cell lines as
well as human primary T lymphocytes, validated and demonstrated the effectiveness of these
tools [12–14,22–23]. Compared to cells with intracellular organelles, RBCs present simpler
structures in terms of heterogeneity in molecular types and RI distributions. Mature RBCs have
no nuclei and are filled with hemoglobin molecules of different variants, so they can be treated
as scatterers with a constant RI value properly weighted among different hemoglobin types.
Hence, the extension of our tools to obtain calculated p-DIs by OCMs of RBCs can provide
important insights into the dependence of diffraction patterns on the shapes and aggregated
configurations of RBCs. In this study, we numerically studied the influence of RBC shape, size,
and deformability on the image textures of p-DI pairs in the cases of deformed RBCs due to
flow pressure and diseases such as thalassemia and anemia. Furthermore, we applied p-DIs to
investigate the classification of normal and abnormal RBCs, and the results were satisfactory.
The OCMs of RBCs and simulation results may offer a new means for evaluating the properties
of RBCs with potential diagnostic capabilities.

2. Methods

A schematic diagram of our p-DIFC system is shown in Fig. 1(a). The p-DIFC system has
two paths for the collection of scattered cross-polarized light. The polarization direction of the
532 nm wavelength incident beam was adjusted with half-wave plates and a polarizing beam
splitter and focused at the core fluid of the p-DIFC system with a focused beam diameter of
approximately 30 µm. Light scattering occurs when the RBCs flow through the focus of the
incident beam because of the mismatched RI between the cell and core fluid. The side scatter
from the imaged cell with a scattering angle of 68-112°and an azimuth angle of 158-202° is
gathered by a microscope objective aligned along the x-axis and split into s- and p-polarized
beams by a polarizing beam splitter. These two beams were imaged by two CCD cameras. By
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combining discrete dipole approximation (DDA) and ray tracing, we previously developed an
accurate method for simulating the light scattering process, which enabled us to obtain calculated
p-DI pairs with OCMs to quantify the correlations between cell morphology and the p-DI textures.
Briefly, we first built an OCM for a given 3D RBC structure and RI value for hemoglobin
molecules inside RBCs. Then, we used the open-source ADDA simulation software to solve
the spatial distribution of scattered light based on the DDA model [24]. The output data from
ADDA are saved in the form of Mueller matrices for selected scattering directions, and different
matrix elements can be linearly combined based on the polarization states of the incident and
scattered light. The calculated p-DI pairs were finally obtained using the ray-tracing software
Zemax (2007, Zemax LLC) to project the scattered light through the p-DIFC imaging unit. For
different RBCs, we only need to update the respective OCMs with a preset cell orientation.

Fig. 1. (a) Polarization diffraction imaging flow cytometry system schematic (L: laser; WP:
half wave plate; PBS: polarizing beam splitter; FL: focusing lens; FC: flow chamber; OBJ:
objective). (b) Cross-section and characteristics of the RBC models (bi: biconcave RBC; t:
thalassemic RBC; d: deformed RBC). (c) Three calculated p-DI pairs by RBC models with
the polarizations of incident beam and scattered light marked.

Figure 1(b) shows the cross sections of three types of RBCs with different shapes and the size
parameters, including the transverse diameter as d, center thickness as b, maximum thickness as
h, and radius for the maximum thickness as c [25,26]. The surface of a biconcave RBC can be
described by the following equation [27]:

r4 + 2Sr2z2 + z4 + Pr2 + Qz2 + R = 0 (1)

where r is the RBC radius in cylindrical coordinates given by
√︁

x2 + y2 and the coefficients S, P,
Q, and R are determined from the values of the size parameters shown in Fig. 1(b). According to
previous studies, thalassemic RBCs have smaller values of cell thickness, transverse diameter, and
RI than normal RBCs. In such cases, the center thickness b can serve as the most useful feature
for quantifying the abnormal morphological characteristics of thalassemic RBCs, which tend to
have very small values of b approaching zero, as shown in Fig. 1(b). To describe the thalassemic
RBCs using Eq. (1), we define the following dimensionless ratios as the relative morphology
parameters for this study: hd = h/d as the relative h thickness, bd = b/d as the relative center
thickness, and cd = 2c/d as the relative h diameter. Using the above definitions, the coefficients
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defined in Eq. (1) can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Note that all the coefficients of Eq. (1) are well defined, even for b=0. The parameters hd, bd
cd, and d were chosen to best fit the specific cells that were imaged in [4] using tomographic
diffractive microscopy. In order to develop an optical model of normally deformed RBCs caused
by the pressure drop across the RBCs and the resistance of the capillary wall, we used the
deformed axisymmetric model proposed by Zarda for different values of a dimensionless pressure
drop ∆P [28]. The cross-section is generated by curve warping on the basis of the biconcave
RBC under the restrictions of volume invariance, as shown in Fig. 1(b). By rotating it around the
axis of symmetry, we can build the 3D structure of a normally deformed RBC.

Figure 1(c) shows the calculated p-DIs of three different RBC models with the polarizations
of the incident and scattered light marked. In view of the dark current noise of CCD is less
than 0.2% of full scale in sensor’s 12-bit pixel depth, the effect of CCD noise was ignored in
simulations and subsequent analysis. In this study, we built 3098 RBC models according to the
variation in the parameters and orientation of the RBC. According to our previous numerical
studies, texture features of p-DIs can vary significantly if the range of angles for rotation of
imaged cells is larger than 10 degrees or more [29]. But we have observed from the measured
p-DI data that cell types of high morphological similarity can be accurately classified. Thus, one
must expect the imaged cells in the core fluid of our flow system must be aligned sufficiently in
their orientations along a preferred direction [14]. Therefore, we defined the orientation as θ by
the rotation axis of symmetry of the RBC and the flow direction and limited it to a small range.
If the rotation axis of symmetry of the RBC rotates toward the flow direction in an anticlockwise
direction, θ is positive; otherwise, θ is negative, as shown in Fig. 1(a). The parameters hd and
cd were set to constant values of 0.295 and 0.65, respectively, and d was varied from 4µm to
11µm [30,31]. According to [25], the norm-RBC has a diameter of approximately 6-8 µm while
macro-RBC has a diameter greater than 8µm and micro-RBC has a diameter smaller than 6µm.
Among these models, 2130 RBC models have the same geometrical shape as biconcave RBCs.
The parameter b of the thalassemic RBC models varies from 0.18 to 0 with a step size of 0.02.
The deformed RBC models were constructed on the basis of biconcave RBCs according to four
different values of ∆P: 1.2, 3, 10, and 26. All RBC models were treated as homogeneous, with a
constant RI within the cells. Considering the difference in RI of deoxygenated and oxygenated
hemoglobin, all RBC models have two RI values of 1.4 and 1.385 for visible light, except for the
thalassemic RBC models, and the RBCs are assumed to suspend in blood plasma with an RI
value of 1.385 [32,33]. Table 1 summarizes the morphology and RI parameters and the total
number of RBC models used in this study.

To quantify the textures of the p-DIs of these groups of RBC models, a gray-level co-occurrence
matrix (GLCM) was adopted. Its output matrix elements express the relative frequencies of
the paired-pixel values along one of the four array directions. There are 15 parameters whose
definitions and symbols are given in the Supplement 1 that can be extracted to characterize the
textures of each p-DI. Additionally, we calculated the mean value of the pixel intensity (MEA) of
the s- and p-polarization diffraction images to characterize the scattering efficiency in different
polarization states. Therefore, every RBC has 32 diffraction parameters for quantification
analysis.

https://doi.org/10.6084/m9.figshare.19087004
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Table 1. Morphology and RI parameters and the total number of the RBC models.

Groups ID(a) d/steps (µm) bd/steps ∆P RI(b) θ/steps (degree) number of models

RBCSbi 4∼6/0.1 0.2 0 1.4,1.385 -7∼7/1 630

RBCNbi 6.1∼8/0.1 0.2 0 1.4,1.385 -7∼7/1 600

RBCLbi 8.1∼11/0.1 0.2 0 1.4,1.385 -7∼7/1 900

RBCSt 5∼6.5/0.5 0∼0.18/0.02 0 1.385 -5∼5/1 440

RBCNd 5∼7.5/0.5(c) 0.2 1.2,3 10, 26 1.4,1.385 -5∼5/1 528

aSubscripts of groups ID represent the range of diameters and the geometrical shape of RBC: S=micro-RBC, N= norm-
RBC, L=macro-RBC, bi= biconcave RBC, t= thalassemic RBC, d= deformed RBC.
bRI values of RBC at λ=532 nm.
cDiameter of RBC without pressure drops.

3. Results and discussion

3.1. Analysis of RBCs with biconcave shapes

With the OCMs of biconcave RBCs constructed with the parameters listed in Table 1, we modeled
the light scattering by single RBCs using ADDA with 532nm wavelength incident light. The
angle-resolved distributions of the scattered light were produced by ADDA in terms of the Mueller
matrix. The elements of the Mueller matrix were combined linearly as the light scattered by an
RBC to take into account the linear polarizations of the incident and scattered light collected by
the imaging unit of the p-DIFC system. By projecting the s- and p-polarized scattered light into
the imaging unit and ray tracing, the calculated p-DI pair can be obtained. We further normalized
each of the two images in a p-DI pair and combined them into a 2-channel false-color image with
s-polarized DI in red and p-polarized images in the green channel. Figure 2 presents selected
examples of the combined images for single RBCs of different sizes and RI values with variations
in its orientation.

From these images, we can see that the diffraction patterns embedded in a p-DI pair presented
as a combined image vary with the parameters of the RBC models and the orientation of the
cell model relative to the direction of the incident beam. To analyze the variations of diffraction
patterns quantitatively and investigate the correlations between the parameters of the RBCs and
their diffraction patterns, we first used SVM with the cubic kernel function to classify these
RBC models based on RI in feature space with GLCM parameters, and the results are shown
in Fig. 3. The true positive rate shown in Fig. 3 is defined as the ratio between the number of
correctly identified RBCs and the total number of RBCs. We can see that the true positive rate is
as high as 98.6%. This demonstrates that the p-DIs are incredibly sensitive to the change in RI
and the designed classifier for recognizing RBCs with different RI, SVM combined with GLCM
parameters, has high recognition performance.

We then evaluated the influence of rotation on the diffraction characteristics of RBCs. From the
Fig. 2(c) and Fig. 2(d) we found that the variation of θ affects not only the texture characteristics
of p-DIs but also the scattering efficiency of scattered light with different polarization directions.
A parameter of fluctuation degree of ratio (FDR) was defined to quantify the variation of s- and
p-polarization scattering efficiency ratio given by s-MEA/p-MEA with θ as the angle of RBC
orientation relative to the default value of θ=0° as follows

FDRθ =
(ratioθ − ratio0)

ratio0
× 100% (3)

Figure 4 shows that FDR varies from -8.4% to 6.1% for θ in a range of -7° to 7° with a positive
slope of change. When the θ lies between -5° and 6° the maximum absolute value of FDR is
about 5.4%. In addition, Fig. 4 also shows that the effect of θ variation on FDR is similar for
RBCs of different transverse diameters.
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Fig. 2. Examples of normalized p-DI calculated with biconcave RBC models. Each p-DI is
labelled with the structure variable on the top left corner. (a) All with the same RI value of
1.4 and a single variable d; (b) All with the same RI value of 1.385 and a single variable d.
(c) and (d) All with the same RI value of 1.4, same d value of 7.5µm, and a single variable θ.

Fig. 3. Confusion matrix of SVM classifiers of all biconcave RBCs with all 32 GLCM
parameters.

With the nonlinear least squares fit between the scattering efficiency ratio and transverse
diameter d of RBCs, the power law relationship between them at different RI values was obtained
and shown in Fig. 5 for three ranges of θ. For the smaller range of -5° ≤ θ ≤ 5°, the results exhibit
a smooth power dependence on d that can be fitted by Eq. (4) and Eq. (5) below for RBCs with
RI values of 1.385 and 1.4, respectively, at θ=0°

ratio1.385 = 6.524d−0.3602 + 0.4252 (4)
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Fig. 4. the variation of s- and p-polarization scattering efficiency ratio with θ relative to
that of θ=0° (all RBCbi with the same RI value of 1.4).

ratio1.4 = 6.635d−0.3365 − 0.7904 (5)

Fig. 5. Power fit of ratio (s-MEA/p-MEA) and d (transverse diameter) with dotted lines and
filled areas indicating the 95% prediction interval.

The R-square values of both fitting exceed 0.999 and the 95% confidence boundaries of the
fitting and the variation in the scattering efficiency ratio caused by θ are also shown in Fig. 5.
Once the orientation angle of RBCs increases to the range from -7° to 7°, the power fitting
deteriorates but does not affect classification accuracy of RBCs with different RI values. In
addition, Fig. 5 shows that the variation in orientation of the RBCs affects the fitting parameters,
particularly when the absolute values of θ are greater than 3°. When the absolute value of θ is
less than 3°, the scattering efficiency ratio variation is within the 95% prediction interval of the
fitting model. Therefore, when the RBC orientation variation is small, the fitting precision and
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reliability of the fitting are satisfactory. As mentioned above, the texture feature research of p-DI
can serve as an efficient method for RBC size and RI distribution analyses.

3.2. Classification of RBCs with normal and abnormal shapes

Usually, the examination of abnormal RBC shapes is required to confirm the diagnosis of an
abnormality. Therefore, the influence of RBC shape changes on the features of p-DI was studied,
as shown in Fig. 6. The selected examples consist of normal shapes, including biconcave and
deformed RBCs, and abnormal shapes, including thalassemic RBCs. It shows that the variation
in ∆P has a significant influence on the diffraction patterns. The diffraction patterns of RBCs
with different b show a high level of similarity to each other. First, we used the same method
mentioned above to classify these RBCs based on shapes in the GLCM parameter space with
either 16 selected parameters or all of the 32 parameters. From Fig. 7 one can see that the average
accuracy of classification with the set of 32 parameters increases by 10.4% and 6.2% respectively
in comparison to that with the set of 16 parameters of only p- or s-polarization. But the accuracy
values were still relatively low with the averaged value at 83.8% and a standard deviation value
at 12.5%. The main false-negative rate was associated with the classification of RBCSbi and
RBCSt. Further analysis showed that 189 out of 201 misidentified RBCSbi models had an RI
value of 1.385. The most likely reason is that the p-DIs are the result of the variations in the
multiple parameters of the RBC models when we tried to classify the RBCs based on shapes
in the GLCM parameter space with all 32 parameters. We introduced the effects of RI, which
played a negative role in improving the accuracy rate of target classification. In addition, the

Fig. 6. Examples of normalized p-DI calculated with selected RBC models. Each p-DI is
labelled with the structure variable on the top left corner. (a) RBCSbi all with the same RI
value of 1.385 and a single variable d. (b) RBCSt all with the same d value of 5.5µm and a
single variable bd . (c) RBCSt all with the same bd value of 0.1 and a single variable d. (d)
RBCNd all with the same RI value of 1.4, the same d value of 6µm and a single variable ∆P.
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continuous and uniform change of bd and the high sensitivity of GLCM parameters to the change
in RI increased this negative impact. Therefore, we removed some of the GLCM parameters
that were important for RI recognition from the SVM classifier with the aid of the minimum
redundancy maximum relevance (mRMR) algorithm [34].

Fig. 7. Confusion matrix of SVM classifiers of RBCSbi, RBCNd and RBCSt. (a) with all 16
GLCM parameters of p-polarization. (b) with all 16 GLCM parameters of s-polarization.
(c) with all 32 GLCM parameters of p- and s-polarization.
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Fig. 8. The rank of predictors by importance score using RI as response.

The mRMR algorithm quantifies the redundancy and relevance using the mutual information
of variables, pairwise mutual information of features, and mutual information of a feature and
the response. It ranks all features for their importance and returns scores. A large score indicates
that the corresponding predictor is important. This can help us to determine which GLCM
parameters should be removed to improve the performance of the SVM classifier based on the
shapes. Figure 8 shows the predictor rank and predictor importance scores using RI as the
response. This shows that the drop in score between the fifth and sixth most important predictors
is large, while the drops after the sixth predictor are relatively small. The small drops indicate
that the difference in predictor importance is not significant. Therefore, we removed the top five
scores listed in Fig. 8 from the SVM classifier to improve its shape-recognition performance.
Figure 9 shows the confusion matrix of the SVM classifiers of RBCSbi, RBCNd, and RBCSt with
the remaining 27 GLCM parameters. We can see that the average accuracy rate increased to
96.8%, and the standard deviation of the accuracy rate dropped to 1.3%. This demonstrated that

Fig. 9. Confusion matrix of SVM classifier of RBCSbi, RBCNd and RBCSt with 27 GLCM
parameters.
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with the help of mRMR, we can find an optimal set of features of p-DI pairs to identify a specific
characteristic of RBCs.

4. Conclusions

By quantitative and qualitative analyses, p-DI pair-based assay of RBCs allows accurate recognition
of 3D shape changes. This study verified that the characteristics of p-DI pairs are related to many
RBC morphology and optical parameters, in which the change in RI was an extremely important
influencing factor and the rotation of RBCs has similar effect on the diffraction characteristic
of RBCs of different transverse diameters. But it is possible that the effect of latter can be
significantly reduced for RBCs flowing in a preferred direction by pressure difference. Under
different RIs, precise and reliable fitting of the transverse diameter of RBCs based on scattering
efficiency ratios of s- to p-polarization were also achieved. Furthermore, by utilizing the mRMR
algorithm, 27 GLCM parameters were selected to obtain highly accurate classification results for
RBCs against different shapes. Overall, the results of this work can help develop label-free and
automated methods for accurate assays of 3D shapes of RBCs.
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